Abstract:Regular documentation of progress notes is one of the main contributors to clinician burden. The abundance of structured chart information in medical records further exacerbates the burden, however, it also presents an opportunity to automate the generation of progress notes. In this paper, we propose a task to automate progress note generation using structured or tabular information present in electronic health records. To this end, we present a novel framework and a large dataset, ChartPNG, for the task which contains $7089$ annotation instances (each having a pair of progress notes and interim structured chart data) across $1616$ patients. We establish baselines on the dataset using large language models from general and biomedical domains. We perform both automated (where the best performing Biomistral model achieved a BERTScore F1 of $80.53$ and MEDCON score of $19.61$) and manual (where we found that the model was able to leverage relevant structured data with $76.9\%$ accuracy) analyses to identify the challenges with the proposed task and opportunities for future research.
Abstract:Clinical semantic parsing (SP) is an important step toward identifying the exact information need (as a machine-understandable logical form) from a natural language query aimed at retrieving information from electronic health records (EHRs). Current approaches to clinical SP are largely based on traditional machine learning and require hand-building a lexicon. The recent advancements in neural SP show a promise for building a robust and flexible semantic parser without much human effort. Thus, in this paper, we aim to systematically assess the performance of two such neural SP models for EHR question answering (QA). We found that the performance of these advanced neural models on two clinical SP datasets is promising given their ease of application and generalizability. Our error analysis surfaces the common types of errors made by these models and has the potential to inform future research into improving the performance of neural SP models for EHR QA.
Abstract:We apply deep learning-based language models to the task of patient cohort retrieval (CR) with the aim to assess their efficacy. The task of CR requires the extraction of relevant documents from the electronic health records (EHRs) on the basis of a given query. Given the recent advancements in the field of document retrieval, we map the task of CR to a document retrieval task and apply various deep neural models implemented for the general domain tasks. In this paper, we propose a framework for retrieving patient cohorts using neural language models without the need of explicit feature engineering and domain expertise. We find that a majority of our models outperform the BM25 baseline method on various evaluation metrics.