Abstract:We devise, implement and performance-asses DYAD, a layer which can serve as a faster and more memory-efficient approximate replacement for linear layers, (nn.Linear() in Pytorch). These layers appear in common subcomponents, such as in the ff module of Transformers. DYAD is based on a bespoke near-sparse matrix structure which approximates the dense "weight" matrix W that matrix-multiplies the input in the typical realization of such a layer, a.k.a DENSE. Our alternative near-sparse matrix structure is decomposable to a sum of 2 matrices permutable to a block-sparse counterpart. These can be represented as 3D tensors, which in unison allow a faster execution of matrix multiplication with the mini-batched input matrix X compared to DENSE (O(rows(W ) x cols(W )) --> O( rows(W ) x cols(W ) # of blocks )). As the crux of our experiments, we pretrain both DYAD and DENSE variants of 2 sizes of the OPT arch and 1 size of the Pythia arch, including at different token scales of the babyLM benchmark. We find DYAD to be competitive (>= 90%) of DENSE performance on zero-shot (e.g. BLIMP), few-shot (OPENLM) and finetuning (GLUE) benchmarks, while being >=7-15% faster to train on-GPU even at 125m scale, besides surfacing larger speedups at increasing scale and model width.
Abstract:Variational autoencoder is a powerful deep generative model with variational inference. The practice of modeling latent variables in the VAE's original formulation as normal distributions with a diagonal covariance matrix limits the flexibility to match the true posterior distribution. We propose a new transformation, dyadic transformation (DT), that can model a multivariate normal distribution. DT is a single-stage transformation with low computational requirements. We demonstrate empirically on MNIST dataset that DT enhances the posterior flexibility and attains competitive results compared to other VAE enhancements.