Abstract:Despite the relentless progress of deep learning models in analyzing the system conditions under cyber-physical events, their abilities are limited in the power system domain due to data availability issues, cost of data acquisition, and lack of interpretation and extrapolation for the data beyond the training windows. In addition, the integration of distributed energy resources (DERs) such as wind and solar generations increases the complexities and nonlinear nature of power systems. Therefore, an interpretable and reliable methodology is of utmost need to increase the confidence of power system operators and their situational awareness for making reliable decisions. This has led to the development of physics-informed neural network (PINN) models as more interpretable, trustworthy, and robust models where the underlying principled laws are integrated into the training process of neural network models to achieve improved performance. This paper proposes a multivariate physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs. The physical laws are integrated through a customized loss function that embeds the underlying Kirchhoff's circuit laws into the training process of the autoencoder. The performance of the multivariate PIConvAE model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA. The results show the exceptional performance of the proposed method in detecting various cyber anomalies in both systems. In addition, the model's effectiveness is evaluated in data scarcity scenarios with different training data ratios. Finally, the model's performance is compared with existing machine learning models where the PIConvAE model surpasses other models with considerably higher detection metrics.
Abstract:Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these uncertain and stochastic systems. It originates from the intermittent characteristics of the distributed energy resources (DERs) generation and load variations. Moreover, the unknown behavior of cyber attacks, especially false data injection attacks (FDIAs) in the distribution grids with complex temporal correlations and the limited amount of labeled data increases the vulnerability of the grids and imposes a high risk in the secure and reliable operation of the grids. To address these challenges, this paper proposes an unsupervised adversarial autoencoder (AAE) model to detect FDIAs in unbalanced power distribution grids integrated with DERs, i.e., PV systems and wind generation. The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements and leverages the power of generative adversarial networks (GANs) for better reconstruction of the input data. The advantage of the proposed data-driven model is that it can detect anomalous points for the system operation without reliance on abstract models or mathematical representations. To evaluate the efficacy of the approach, it is tested on IEEE 13-bus and 123-bus systems with historical meteorological data (wind speed, ambient temperature, and solar irradiance) as well as historical real-world load data under three types of data falsification functions. The comparison of the detection results of the proposed model with other unsupervised learning methods verifies its superior performance in detecting cyber attacks in unbalanced power distribution grids.
Abstract:The growing trend toward the modernization of power distribution systems has facilitated the installation of advanced measurement units and promotion of the cyber communication systems. However, these infrastructures are still prone to stealth cyber attacks. The existing data-driven anomaly detection methods suffer from a lack of knowledge about the system's physics, lack of interpretability, and scalability issues hindering their practical applications in real-world scenarios. To address these concerns, physics-informed neural networks (PINNs) were introduced. This paper proposes a multivariate physics-informed convolutional autoencoder (PIConvAE) to detect stealthy cyber-attacks in power distribution grids. The proposed model integrates the physical principles into the loss function of the neural network by applying Kirchhoff's law. Simulations are performed on the modified IEEE 13-bus and 123-bus systems using OpenDSS software to validate the efficacy of the proposed model for stealth attacks. The numerical results prove the superior performance of the proposed PIConvAE in three aspects: a) it provides more accurate results compared to the data-driven ConvAE model, b) it requires less training time to converge c) the model excels in effectively detecting a wide range of attack magnitudes making it powerful in detecting stealth attacks.