Abstract:Recent works have shown that diffusion models can undergo phase transitions, the resolution of which is needed for accurately generating samples. This has motivated the use of different noise schedules, the two most common choices being referred to as variance preserving (VP) and variance exploding (VE). Here we revisit these schedules within the framework of stochastic interpolants. Using the Gaussian Mixture (GM) and Curie-Weiss (CW) data distributions as test case models, we first investigate the effect of the variance of the initial noise distribution and show that VP recovers the low-level feature (the distribution of each mode) but misses the high-level feature (the asymmetry between modes), whereas VE performs oppositely. We also show that this dichotomy, which happens when denoising by a constant amount in each step, can be avoided by using noise schedules specific to VP and VE that allow for the recovery of both high- and low-level features. Finally we show that these schedules yield generative models for the GM and CW model whose probability flow ODE can be discretized using $\Theta_d(1)$ steps in dimension $d$ instead of the $\Theta_d(\sqrt{d})$ steps required by constant denoising.
Abstract:We analyze the training of a two-layer autoencoder used to parameterize a flow-based generative model for sampling from a high-dimensional Gaussian mixture. Previous work shows that the phase where the relative probability between the modes is learned disappears as the dimension goes to infinity without an appropriate time schedule. We introduce a time dilation that solves this problem. This enables us to characterize the learned velocity field, finding a first phase where the probability of each mode is learned and a second phase where the variance of each mode is learned. We find that the autoencoder representing the velocity field learns to simplify by estimating only the parameters relevant to each phase. Turning to real data, we propose a method that, for a given feature, finds intervals of time where training improves accuracy the most on that feature. Since practitioners take a uniform distribution over training times, our method enables more efficient training. We provide preliminary experiments validating this approach.
Abstract:The training dynamics of linear networks are well studied in two distinct setups: the lazy regime and balanced/active regime, depending on the initialization and width of the network. We provide a surprisingly simple unyfing formula for the evolution of the learned matrix that contains as special cases both lazy and balanced regimes but also a mixed regime in between the two. In the mixed regime, a part of the network is lazy while the other is balanced. More precisely the network is lazy along singular values that are below a certain threshold and balanced along those that are above the same threshold. At initialization, all singular values are lazy, allowing for the network to align itself with the task, so that later in time, when some of the singular value cross the threshold and become active they will converge rapidly (convergence in the balanced regime is notoriously difficult in the absence of alignment). The mixed regime is the `best of both worlds': it converges from any random initialization (in contrast to balanced dynamics which require special initialization), and has a low rank bias (absent in the lazy dynamics). This allows us to prove an almost complete phase diagram of training behavior as a function of the variance at initialization and the width, for a MSE training task.