Abstract:We present a method for learning 3D spatial relationships between object pairs, referred to as object-object spatial relationships (OOR), by leveraging synthetically generated 3D samples from pre-trained 2D diffusion models. We hypothesize that images synthesized by 2D diffusion models inherently capture plausible and realistic OOR cues, enabling efficient ways to collect a 3D dataset to learn OOR for various unbounded object categories. Our approach begins by synthesizing diverse images that capture plausible OOR cues, which we then uplift into 3D samples. Leveraging our diverse collection of plausible 3D samples for the object pairs, we train a score-based OOR diffusion model to learn the distribution of their relative spatial relationships. Additionally, we extend our pairwise OOR to multi-object OOR by enforcing consistency across pairwise relations and preventing object collisions. Extensive experiments demonstrate the robustness of our method across various object-object spatial relationships, along with its applicability to real-world 3D scene arrangement tasks using the OOR diffusion model.
Abstract:Understanding the ability of humans to use objects is crucial for AI to improve daily life. Existing studies for learning such ability focus on human-object patterns (e.g., contact, spatial relation, orientation) in static situations, and learning Human-Object Interaction (HOI) patterns over time (i.e., movement of human and object) is relatively less explored. In this paper, we introduce a novel type of affordance named Dynamic Affordance. For a given input 3D object mesh, we learn dynamic affordance which models the distribution of both (1) human motion and (2) human-guided object pose during interactions. As a core idea, we present a method to learn the 3D dynamic affordance from synthetically generated 2D videos, leveraging a pre-trained video diffusion model. Specifically, we propose a pipeline that first generates 2D HOI videos from the 3D object and then lifts them into 3D to generate 4D HOI samples. Once we generate diverse 4D HOI samples on various target objects, we train our DAViD, where we present a method based on the Low-Rank Adaptation (LoRA) module for pre-trained human motion diffusion model (MDM) and an object pose diffusion model with human pose guidance. Our motion diffusion model is extended for multi-object interactions, demonstrating the advantage of our pipeline with LoRA for combining the concepts of object usage. Through extensive experiments, we demonstrate our DAViD outperforms the baselines in generating human motion with HOIs.