Abstract:This study attempts to advancing content analysis methodology from consensus-oriented to coordination-oriented practices, thereby embracing diverse coding outputs and exploring the dynamics among differential perspectives. As an exploratory investigation of this approach, we evaluate six GPT-4o configurations to analyze sentiment in Fox News and MSNBC transcripts on Biden and Trump during the 2020 U.S. presidential campaign, examining patterns across these models. By assessing each model's alignment with ideological perspectives, we explore how partisan selective processing could be identified in LLM-Assisted Content Analysis (LACA). Findings reveal that partisan persona LLMs exhibit stronger ideological biases when processing politically congruent content. Additionally, intercoder reliability is higher among same-partisan personas compared to cross-partisan pairs. This approach enhances the nuanced understanding of LLM outputs and advances the integrity of AI-driven social science research, enabling simulations of real-world implications.
Abstract:Large language models (LLMs) are employed to simulate human-like responses in social surveys, yet it remains unclear if they develop biases like social desirability response (SDR) bias. To investigate this, GPT-4 was assigned personas from four societies, using data from the 2022 Gallup World Poll. These synthetic samples were then prompted with or without a commitment statement intended to induce SDR. The results were mixed. While the commitment statement increased SDR index scores, suggesting SDR bias, it reduced civic engagement scores, indicating an opposite trend. Additional findings revealed demographic associations with SDR scores and showed that the commitment statement had limited impact on GPT-4's predictive performance. The study underscores potential avenues for using LLMs to investigate biases in both humans and LLMs themselves.