Abstract:During early optimization passes, compilers must make predictions for machine-dependent characteristics such as execution unit utilization, number of register spills, latency, throughput etc. to generate better code. Often a hand-written static/analytical hardware cost model is built into the compiler. However, the need for more sophisticated and varied predictions has become more pronounced with the development of deep learning compilers which need to optimize dataflow graphs. Such compilers usually employ a much higher level MLIR form as an IR representation before lowering to traditional LLVM-IR. A static/analytical cost model in such a scenario is cumbersome and error prone as the opcodes represent very high level algebraic/arithmetic operations. Hence, we develop a machine learning-based cost model for high-level MLIR which can predict different target variables of interest such as CPU/GPU/xPU utilization, instructions executed, register usage etc. By considering the incoming MLIR as a text input a la NLP models we can apply well-known techniques from modern NLP research to help predict hardware characteristics more accurately. We expect such precise ML-driven hardware cost models to guide our deep learning compiler in graph level optimizations around operator fusion, local memory allocation, kernel scheduling etc. as well as in many kernel-level optimizations such as loop interchange, LICM and unroll. We report early work-in -progress results of developing such models on high-level MLIR representing dataflow graphs emitted by Pytorch/Tensorflow-like frameworks as well as lower-level dialects like affine. We show that these models can provide reasonably good estimates with low error bounds for various hardware characteristics of interest and can be a go-to mechanism for hardware cost modelling in the future.
Abstract:Instruction combiner (IC) is a critical compiler optimization pass, which replaces a sequence of instructions with an equivalent and optimized instruction sequence at basic block level. There can be thousands of instruction-combining patterns which need to be frequently updated as new coding idioms/applications and novel hardware evolve over time. This results in frequent updates to the IC optimization pass thereby incurring considerable human effort and high software maintenance costs. To mitigate these challenges associated with the traditional IC, we design and implement a Neural Instruction Combiner (NIC) and demonstrate its feasibility by integrating it into the standard LLVM compiler optimization pipeline. NIC leverages neural sequence-to-sequence (Seq2Seq) models for generating optimized encoded IR sequence from the unoptimized encoded IR sequence. To the best of our knowledge, ours is the first work demonstrating the feasibility of a neural instruction combiner built into a full-fledged compiler pipeline. Given the novelty of this task, we built a new dataset for training our NIC neural model. We show that NIC achieves exact match results percentage of 72% for optimized sequences as compared to traditional IC and neural machine translation metric Bleu precision score of 0.94, demonstrating its feasibility in a production compiler pipeline.