Abstract:Dynamic graph learning has gained significant attention as it offers a powerful means to model intricate interactions among entities across various real-world and scientific domains. Notably, graphs serve as effective representations for diverse networks such as transportation, brain, social, and internet networks. Furthermore, the rapid advancements in machine learning have expanded the scope of dynamic graph applications beyond the aforementioned domains. In this paper, we present a review of lesser-explored applications of dynamic graph learning. This study revealed the potential of machine learning on dynamic graphs in addressing challenges across diverse domains, including those with limited levels of association with the field.
Abstract:Graphs are a powerful representation tool in machine learning applications, with link prediction being a key task in graph learning. Temporal link prediction in dynamic networks is of particular interest due to its potential for solving complex scientific and real-world problems. Traditional approaches to temporal link prediction have focused on finding the aggregation of dynamics of the network as a unified output. In this study, we propose a novel perspective on temporal link prediction by defining nodes as Newtonian objects and incorporating the concept of velocity to predict network dynamics. By computing more specific dynamics of each node, rather than overall dynamics, we improve both accuracy and explainability in predicting future connections. We demonstrate the effectiveness of our approach using two datasets, including 17 years of co-authorship data from PubMed. Experimental results show that our temporal graph embedding dynamics approach improves downstream classification models' ability to predict future collaboration efficacy in co-authorship networks by 17.34% (AUROC improvement relative to the baseline model). Furthermore, our approach offers an interpretable layer over traditional approaches to address the temporal link prediction problem.