Abstract:Space weather forecasting is critical for mitigating radiation risks in space exploration and protecting Earth-based technologies from geomagnetic disturbances. This paper presents the development of a Machine Learning (ML)- ready data processing tool for Near Real-Time (NRT) space weather forecasting. By merging data from diverse NRT sources such as solar imagery, magnetic field measurements, and energetic particle fluxes, the tool addresses key gaps in current space weather prediction capabilities. The tool processes and structures the data for machine learning models, focusing on time-series forecasting and event detection for extreme solar events. It provides users with a framework to download, process, and label data for ML applications, streamlining the workflow for improved NRT space weather forecasting and scientific research.
Abstract:We introduce a new multivariate data set that utilizes multiple spacecraft collecting in-situ and remote sensing heliospheric measurements shown to be linked to physical processes responsible for generating solar energetic particles (SEPs). Using the Geostationary Operational Environmental Satellites (GOES) flare event list from Solar Cycle (SC) 23 and part of SC 24 (1998-2013), we identify 252 solar events (flares) that produce SEPs and 17,542 events that do not. For each identified event, we acquire the local plasma properties at 1 au, such as energetic proton and electron data, upstream solar wind conditions, and the interplanetary magnetic field vector quantities using various instruments onboard GOES and the Advanced Composition Explorer (ACE) spacecraft. We also collect remote sensing data from instruments onboard the Solar Dynamic Observatory (SDO), Solar and Heliospheric Observatory (SoHO), and the Wind solar radio instrument WAVES. The data set is designed to allow for variations of the inputs and feature sets for machine learning (ML) in heliophysics and has a specific purpose for forecasting the occurrence of SEP events and their subsequent properties. This paper describes a dataset created from multiple publicly available observation sources that is validated, cleaned, and carefully curated for our machine-learning pipeline. The dataset has been used to drive the newly-developed Multivariate Ensemble of Models for Probabilistic Forecast of Solar Energetic Particles (MEMPSEP; see MEMPSEP I (Chatterjee et al., 2023) and MEMPSEP II (Dayeh et al., 2023) for associated papers).