Abstract:Deep generative models have shown immense potential in generating unseen data that has properties of real data. These models learn complex data-generating distributions starting from a smaller set of latent dimensions. However, generative models have encountered great skepticism in scientific domains due to the disconnection between generative latent vectors and scientifically relevant quantities. In this study, we integrate three types of machine learning models to generate solar magnetic patches in a physically interpretable manner and use those as a query to find matching patches in real observations. We use the magnetic field measurements from Space-weather HMI Active Region Patches (SHARPs) to train a Generative Adversarial Network (GAN). We connect the physical properties of GAN-generated images with their latent vectors to train Support Vector Machines (SVMs) that do mapping between physical and latent spaces. These produce directions in the GAN latent space along which known physical parameters of the SHARPs change. We train a self-supervised learner (SSL) to make queries with generated images and find matches from real data. We find that the GAN-SVM combination enables users to produce high-quality patches that change smoothly only with a prescribed physical quantity, making generative models physically interpretable. We also show that GAN outputs can be used to retrieve real data that shares the same physical properties as the generated query. This elevates Generative Artificial Intelligence (AI) from a means-to-produce artificial data to a novel tool for scientific data interrogation, supporting its applicability beyond the domain of heliophysics.
Abstract:We introduce a new multivariate data set that utilizes multiple spacecraft collecting in-situ and remote sensing heliospheric measurements shown to be linked to physical processes responsible for generating solar energetic particles (SEPs). Using the Geostationary Operational Environmental Satellites (GOES) flare event list from Solar Cycle (SC) 23 and part of SC 24 (1998-2013), we identify 252 solar events (flares) that produce SEPs and 17,542 events that do not. For each identified event, we acquire the local plasma properties at 1 au, such as energetic proton and electron data, upstream solar wind conditions, and the interplanetary magnetic field vector quantities using various instruments onboard GOES and the Advanced Composition Explorer (ACE) spacecraft. We also collect remote sensing data from instruments onboard the Solar Dynamic Observatory (SDO), Solar and Heliospheric Observatory (SoHO), and the Wind solar radio instrument WAVES. The data set is designed to allow for variations of the inputs and feature sets for machine learning (ML) in heliophysics and has a specific purpose for forecasting the occurrence of SEP events and their subsequent properties. This paper describes a dataset created from multiple publicly available observation sources that is validated, cleaned, and carefully curated for our machine-learning pipeline. The dataset has been used to drive the newly-developed Multivariate Ensemble of Models for Probabilistic Forecast of Solar Energetic Particles (MEMPSEP; see MEMPSEP I (Chatterjee et al., 2023) and MEMPSEP II (Dayeh et al., 2023) for associated papers).