Abstract:Federated learning holds great promise in learning from fragmented sensitive data and has revolutionized how machine learning models are trained. This article provides a systematic overview and detailed taxonomy of federated learning. We investigate the existing security challenges in federated learning and provide a comprehensive overview of established defense techniques for data poisoning, inference attacks, and model poisoning attacks. The work also presents an overview of current training challenges for federated learning, focusing on handling non-i.i.d. data, high dimensionality issues, and heterogeneous architecture, and discusses several solutions for the associated challenges. Finally, we discuss the remaining challenges in managing federated learning training and suggest focused research directions to address the open questions. Potential candidate areas for federated learning, including IoT ecosystem, healthcare applications, are discussed with a particular focus on banking and financial domains.
Abstract:Call centers, in which human operators attend clients using textual chat, are very common in modern e-commerce. Training enough skilled operators who are able to provide good service is a challenge. We suggest an algorithm and a method to train and implement an assisting agent that provides on-line advice to operators while they attend clients. The agent is domain-independent and can be introduced to new domains without major efforts in design, training and organizing structured knowledge of the professional discipline. We demonstrate the applicability of the system in an experiment that realizes its full life-cycle on a specific domain and analyze its capabilities.