Abstract:This study presents an innovative AI-driven tool for diagnosing Peyronie's Disease (PD), a condition that affects between 0.3% and 13.1% of men worldwide. Our method uses key point detection on both images and videos to measure penile curvature angles, utilizing advanced computer vision techniques. This tool has demonstrated high accuracy in identifying anatomical landmarks, validated against conventional goniometer measurements. Traditional PD diagnosis often involves subjective and invasive methods, which can lead to patient discomfort and inaccuracies. Our approach offers a precise, reliable, and non-invasive diagnostic tool to address these drawbacks. The model distinguishes between PD and normal anatomical changes with a sensitivity of 96.7% and a specificity of 100%. This advancement represents a significant improvement in urological diagnostics, greatly enhancing the efficacy and convenience of PD assessment for healthcare providers and patients.
Abstract:Artificial Intelligence applications have shown promise in the management of pandemics and have been widely used to assist the identification, classification, and diagnosis of medical images. In response to the global outbreak of Monkeypox (Mpox), the HeHealth.ai team leveraged an existing tool to screen for sexually transmitted diseases to develop a digital screening test for symptomatic Mpox through AI approaches. Prior to the global outbreak of Mpox, the team developed a smartphone app, where app users can use their own smartphone cameras to take pictures of their own penises to screen for symptomatic STD. The AI model was initially developed using 5000 cases and use a modified convolutional neural network to output prediction scores across visually diagnosable penis pathologies including Syphilis, Herpes Simplex Virus, and Human Papilloma Virus. From June 2022 to October 2022, a total of about 22,000 users downloaded the HeHealth app, and about 21,000 images have been analyzed using HeHealth AI technology. We then engaged in formative research, stakeholder engagement, rapid consolidation images, a validation study, and implementation of the tool from July 2022. From July 2022 to October 2022, a total of 1000 Mpox related images had been used to train the Mpox symptom checker tool. Our digital symptom checker tool showed accuracy of 87% to rule in Mpox and 90% to rule out symptomatic Mpox. Several hurdles identified included issues of data privacy and security for app users, initial lack of data to train the AI tool, and the potential generalizability of input data. We offer several suggestions to help others get started on similar projects in emergency situations, including engaging a wide range of stakeholders, having a multidisciplinary team, prioritizing pragmatism, as well as the concept that big data in fact is made up of small data.