Abstract:Sentiment classification is one the best use case of classical natural language processing (NLP) where we can witness its power in various daily life domains such as banking, business and marketing industry. We already know how classical AI and machine learning can change and improve technology. Quantum natural language processing (QNLP) is a young and gradually emerging technology which has the potential to provide quantum advantage for NLP tasks. In this paper we show the first application of QNLP for sentiment analysis and achieve perfect test set accuracy for three different kinds of simulations and a decent accuracy for experiments ran on a noisy quantum device. We utilize the lambeq QNLP toolkit and $t|ket>$ by Cambridge Quantum (Quantinuum) to bring out the results.
Abstract:Quantum computing has gained a lot of attention recently, and scientists have seen potential applications in this field using quantum computing for Cryptography and Communication to Machine Learning and Healthcare. Protein folding has been one of the most interesting areas to study, and it is also one of the biggest problems of biochemistry. Each protein folds distinctively, and the difficulty of finding its stable shape rapidly increases with an increase in the number of amino acids in the chain. A moderate protein has about 100 amino acids, and the number of combinations one needs to verify to find the stable structure is enormous. At some point, the number of these combinations will be so vast that classical computers cannot even attempt to solve them. In this paper, we examine how this problem can be solved with the help of quantum computing using two different algorithms, Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA), using Qiskit Nature. We compare the results of different quantum hardware and simulators and check how error mitigation affects the performance. Further, we make comparisons with SoTA algorithms and evaluate the reliability of the method.