Abstract:Introduction: Identifying the potential firing patterns following by different brain regions under normal and abnormal conditions increases our understanding of what is happening in the level of neural interactions in the brain. On the other hand, it is important to be capable of modeling the potential neural activities, in order to build precise artificial neural networks. The Izhikevich model is one of the simple biologically plausible models that is capable of capturing the most known firing patterns of neurons. This property makes the model efficient in simulating large-scale networks of neurons. Improving the Izhikevich model for adapting with the neuronal activity of rat brain with great accuracy would make the model effective for future neural network implementations. Methods: Data sampling from two brain regions, the HIP and BLA, is performed by extracellular recordings of male Wistar rats and spike sorting is done using Plexon offline sorter. Further data analyses are done through NeuroExplorer and MATLAB software. In order to optimize the Izhikevich model parameters, the genetic algorithm is used. Results: In the present study, the possible firing patterns of the real single neurons of the HIP and BLA are identified. Additionally, improvement of the Izhikevich model is achieved. As a result, the real neuronal spiking pattern of these regions neurons, and the corresponding cases of the Izhikevich neuron spiking pattern are adjusted with great accuracy. Conclusion: This study is conducted to elevate our knowledge of neural interactions in different structures of the brain and accelerate the quality of future large scale neural networks simulations, as well as reducing the modeling complexity. This aim is achievable by performing the improved Izhikevich model, and inserting only the plausible firing patterns and eliminating unrealistic ones, as the results of this study.
Abstract:Developing electrophysiological recordings of brain neuronal activity and their analysis provide a basis for exploring the structure of brain function and nervous system investigation. The recorded signals are typically a combination of spikes and noise. High amounts of background noise and possibility of electric signaling recording from several neurons adjacent to the recording site have led scientists to develop neuronal signal processing tools such as spike sorting to facilitate brain data analysis. Spike sorting plays a pivotal role in understanding the electrophysiological activity of neuronal networks. This process prepares recorded data for interpretations of neurons interactions and understanding the overall structure of brain functions. Spike sorting consists of three steps: spike detection, feature extraction, and spike clustering. There are several methods to implement each of spike sorting steps. This paper provides a systematic comparison of various spike sorting sub-techniques applied to real extracellularly recorded data from a rat brain basolateral amygdala. An efficient sorted data resulted from careful choice of spike sorting sub-methods leads to better interpretation of the brain structures connectivity under different conditions, which is a very sensitive concept in diagnosis and treatment of neurological disorders. Here, spike detection is performed by appropriate choice of threshold level via three different approaches. Feature extraction is done through PCA and Kernel PCA methods, which Kernel PCA outperforms. We have applied four different algorithms for spike clustering including K-means, Fuzzy C-means, Bayesian and Fuzzy maximum likelihood estimation. As one requirement of most clustering algorithms, optimal number of clusters is achieved through validity indices for each method. Finally, the sorting results are evaluated using inter-spike interval histograms.