Abstract:A well-known retinal disease that sends blurry visions to the affected patients is Macular Degeneration. This research is based on classifying the healthy and macular degeneration fundus by localizing the affected region of the fundus. A CNN architecture and CNN with ResNet architecture (ResNet50, ResNet50v2, ResNet101, ResNet101v2, ResNet152, ResNet152v2) as the backbone are used to classify the two types of fundus. The data are split into three categories including (a) Training set is 90% and Testing set is 10% (b) Training set is 80% and Testing set is 20%, (c) Training set is 50% and Testing set is 50%. After the training, the best model has been selected from the evaluation metrics. Among the models, CNN with a backbone of ResNet50 performs best which gives the training accuracy of 98.7% for 90% train and 10% test data split. With this model, we have performed the Grad-CAM visualization to get the region of the affected area of the fundus.
Abstract:Gait recognition is one of the most recent emerging techniques of human biometric which can be used for security based purposes having unobtrusive learning method. In comparison with other bio-metrics gait analysis has some special security features. Most of the biometric technique uses sequential template based component analysis for recognition. Comparing with those methods, we proposed a developed technique for gait identification using the feature Gait Energy Image (GEI). GEI representation of gait contains all information of each image in one gait cycle and requires less storage and low processing speed. As only one image is enough to store the necessary information in GEI feature recognition process is very easier than any other feature for gait recognition. Gait recognition has some limitations in recognition process like viewing angle variation, walking speed, clothes, carrying load etc. Our proposed method in the paper compares the recognition performance with template based feature extraction which needs to process each frame in the cycle. We use GEI which gives relatively all information about all the frames in the cycle and results in better performance than other feature of gait analysis.