Abstract:Predicative machine learning models are frequently being used by companies, institutes and organizations to make choices about humans. Strategic classification studies learning in settings where self-interested users can strategically modify their features to obtain favorable predictive outcomes. A key working assumption, however, is that 'favorable' always means 'positive'; this may be appropriate in some applications (e.g., loan approval, university admissions and hiring), but reduces to a fairly narrow view what user interests can be. In this work we argue for a broader perspective on what accounts for strategic user behavior, and propose and study a flexible model of generalized strategic classification. Our generalized model subsumes most current models, but includes other novel settings; among these, we identify and target one intriguing sub-class of problems in which the interests of users and the system are aligned. For this cooperative setting, we provide an in-depth analysis, and propose a practical learning approach that is effective and efficient. We compare our approach to existing learning methods and show its statistical and optimization benefits. Returning to our fully generalized model, we show how our results and approach can extend to the most general case. We conclude with a set of experiments that empirically demonstrate the utility of our approach.
Abstract:Strategic classification regards the problem of learning in settings where users can strategically modify their features to improve outcomes. This setting applies broadly and has received much recent attention. But despite its practical significance, work in this space has so far been predominantly theoretical. In this paper we present a learning framework for strategic classification that is practical. Our approach directly minimizes the "strategic" empirical risk, achieved by differentiating through the strategic response of users. This provides flexibility that allows us to extend beyond the original problem formulation and towards more realistic learning scenarios. A series of experiments demonstrates the effectiveness of our approach on various learning settings.
Abstract:Prediction of stress conditions is important for monitoring plant growth stages, disease detection, and assessment of crop yields. Multi-modal data, acquired from a variety of sensors, offers diverse perspectives and is expected to benefit the prediction process. We present several methods and strategies for abiotic stress prediction in banana plantlets, on a dataset acquired during a two and a half weeks period, of plantlets subject to four separate water and fertilizer treatments. The dataset consists of RGB and thermal images, taken once daily of each plant. Results are encouraging, in the sense that neural networks exhibit high prediction rates (over $90\%$ amongst four classes), in cases where there are hardly any noticeable features distinguishing the treatments, much higher than field experts can supply.