Abstract:Identifying Out-of-distribution (OOD) data is becoming increasingly critical as the real-world applications of deep learning methods expand. Post-hoc methods modify softmax scores fine-tuned on outlier data or leverage intermediate feature layers to identify distinctive patterns between In-Distribution (ID) and OOD samples. Other methods focus on employing diverse OOD samples to learn discrepancies between ID and OOD. These techniques, however, are typically dependent on the quality of the outlier samples assumed. Density-based methods explicitly model class-conditioned distributions but this requires long training time or retraining the classifier. To tackle these issues, we introduce \textit{FlowCon}, a new density-based OOD detection technique. Our main innovation lies in efficiently combining the properties of normalizing flow with supervised contrastive learning, ensuring robust representation learning with tractable density estimation. Empirical evaluation shows the enhanced performance of our method across common vision datasets such as CIFAR-10 and CIFAR-100 pretrained on ResNet18 and WideResNet classifiers. We also perform quantitative analysis using likelihood plots and qualitative visualization using UMAP embeddings and demonstrate the robustness of the proposed method under various OOD contexts. Code will be open-sourced post decision.
Abstract:Detecting action units is an important task in face analysis, especially in facial expression recognition. This is due, in part, to the idea that expressions can be decomposed into multiple action units. In this paper we investigate the impact of action unit occurrence patterns on detection of action units. To facilitate this investigation, we review state of the art literature, for AU detection, on 2 state-of-the-art face databases that are commonly used for this task, namely DISFA, and BP4D. Our findings, from this literature review, suggest that action unit occurrence patterns strongly impact evaluation metrics (e.g. F1-binary). Along with the literature review, we also conduct multi and single action unit detection, as well as propose a new approach to explicitly train deep neural networks using the occurrence patterns to boost the accuracy of action unit detection. These experiments validate that action unit patterns directly impact the evaluation metrics.