Abstract:Inferring models, predicting the future, and estimating the entropy rate of discrete-time, discrete-event processes is well-worn ground. However, a much broader class of discrete-event processes operates in continuous-time. Here, we provide new methods for inferring, predicting, and estimating them. The methods rely on an extension of Bayesian structural inference that takes advantage of neural network's universal approximation power. Based on experiments with complex synthetic data, the methods are competitive with the state-of-the-art for prediction and entropy-rate estimation.
Abstract:Reservoir computers (RCs) and recurrent neural networks (RNNs) can mimic any finite-state automaton in theory, and some workers demonstrated that this can hold in practice. We test the capability of generalized linear models, RCs, and Long Short-Term Memory (LSTM) RNN architectures to predict the stochastic processes generated by a large suite of probabilistic deterministic finite-state automata (PDFA). PDFAs provide an excellent performance benchmark in that they can be systematically enumerated, the randomness and correlation structure of their generated processes are exactly known, and their optimal memory-limited predictors are easily computed. Unsurprisingly, LSTMs outperform RCs, which outperform generalized linear models. Surprisingly, each of these methods can fall short of the maximal predictive accuracy by as much as 50% after training and, when optimized, tend to fall short of the maximal predictive accuracy by ~5%, even though previously available methods achieve maximal predictive accuracy with orders-of-magnitude less data. Thus, despite the representational universality of RCs and RNNs, using them can engender a surprising predictive gap for simple stimuli. One concludes that there is an important and underappreciated role for methods that infer "causal states" or "predictive state representations".