Abstract:Developing algorithms for accurate and comprehensive neural decoding of mental contents is one of the long-cherished goals in the field of neuroscience and brain-machine interfaces. Previous studies have demonstrated the feasibility of neural decoding by training machine learning models to map brain activity patterns into a semantic vector representation of stimuli. These vectors, hereafter referred as pretrained feature vectors, are usually derived from semantic spaces based solely on image and/or text features and therefore they might have a totally different characteristics than how visual stimuli is represented in the human brain, resulting in limiting the capability of brain decoders to learn this mapping. To address this issue, we propose a representation learning framework, termed brain-grounding of semantic vectors, which fine-tunes pretrained feature vectors to better align with the neural representation of visual stimuli in the human brain. We trained this model this model with functional magnetic resonance imaging (fMRI) of 150 different visual stimuli categories, and then performed zero-shot brain decoding and identification analyses on 1) fMRI and 2) magnetoencephalography (MEG). Interestingly, we observed that by using the brain-grounded vectors, the brain decoding and identification accuracy on brain data from different neuroimaging modalities increases. These findings underscore the potential of incorporating a richer array of brain-derived features to enhance performance of brain decoding algorithms.
Abstract:Dynamic mode (DM) decomposition decomposes spatiotemporal signals into basic oscillatory components (DMs). DMs can improve the accuracy of neural decoding when used with the nonlinear Grassmann kernel, compared to conventional power features. However, such kernel-based machine learning algorithms have three limitations: large computational time preventing real-time application, incompatibility with non-kernel algorithms, and low interpretability. Here, we propose a mapping function corresponding to the Grassmann kernel that explicitly transforms DMs into spatial DM (sDM) features, which can be used in any machine learning algorithm. Using electrocorticographic signals recorded during various movement and visual perception tasks, the sDM features were shown to improve the decoding accuracy and computational time compared to conventional methods. Furthermore, the components of the sDM features informative for decoding showed similar characteristics to the high-$\gamma$ power of the signals, but with higher trial-to-trial reproducibility. The proposed sDM features enable fast, accurate, and interpretable neural decoding.