Abstract:Automating teaching presents unique challenges, as replicating human interaction and adaptability is complex. Automated systems cannot often provide nuanced, real-time feedback that aligns with students' individual learning paces or comprehension levels, which can hinder effective support for diverse needs. This is especially challenging in fields where abstract concepts require adaptive explanations. In this paper, we propose a vision language retrieval augmented generation (named VL-RAG) system that has the potential to bridge this gap by delivering contextually relevant, visually enriched responses that can enhance comprehension. By leveraging a database of tailored answers and images, the VL-RAG system can dynamically retrieve information aligned with specific questions, creating a more interactive and engaging experience that fosters deeper understanding and active student participation. It allows students to explore concepts visually and verbally, promoting deeper understanding and reducing the need for constant human oversight while maintaining flexibility to expand across different subjects and course material.
Abstract:Visual Question Answering (VQA) research seeks to create AI systems to answer natural language questions in images, yet VQA methods often yield overly simplistic and short answers. This paper aims to advance the field by introducing Visual Question Explanation (VQE), which enhances the ability of VQA to provide detailed explanations rather than brief responses and address the need for more complex interaction with visual content. We first created an MLVQE dataset from a 14-week streamed video machine learning course, including 885 slide images, 110,407 words of transcripts, and 9,416 designed question-answer (QA) pairs. Next, we proposed a novel SparrowVQE, a small 3 billion parameters multimodal model. We trained our model with a three-stage training mechanism consisting of multimodal pre-training (slide images and transcripts feature alignment), instruction tuning (tuning the pre-trained model with transcripts and QA pairs), and domain fine-tuning (fine-tuning slide image and QA pairs). Eventually, our SparrowVQE can understand and connect visual information using the SigLIP model with transcripts using the Phi-2 language model with an MLP adapter. Experimental results demonstrate that our SparrowVQE achieves better performance in our developed MLVQE dataset and outperforms state-of-the-art methods in the other five benchmark VQA datasets. The source code is available at \url{https://github.com/YoushanZhang/SparrowVQE}.