Abstract:We propose a fast partial video copy detection framework in this paper. In this framework all frame features of the reference videos are organized in a KNN searchable database. Instead of scanning all reference videos, the query video segment does a fast KNN search in the global feature database. The returned results are used to generate a short list of candidate videos. A modified temporal network is then used to localize the copy segment in the candidate videos. We evaluate different choice of CNN features on the VCDB dataset. Our benchmark F1 score exceeds the state of the art by a big margin.
Abstract:As the deep learning makes big progresses in still-image face recognition, unconstrained video face recognition is still a challenging task due to low quality face images caused by pose, blur, occlusion, illumination etc. In this paper we propose a network for face recognition which gives an explicit and quantitative quality score at the same time when a feature vector is extracted. To our knowledge this is the first network that implements these two functions in one network online. This network is very simple by adding a quality network branch to the baseline network of face recognition. It does not require training datasets with annotated face quality labels. We evaluate this network on both still-image face datasets and video face datasets and achieve the state-of-the-art performance in many cases. This network enables a lot of applications where an explicit face quality scpre is used. We demonstrate three applications of the explicit face quality, one of which is a progressive feature aggregation scheme in online video face recognition. We design an experiment to prove the benefits of using the face quality in this application. Code will be available at \url{https://github.com/deepcam-cn/facequality}.