Abstract:Cloud masking is a crucial task that is well-motivated for meteorology and its applications in environmental and atmospheric sciences. Its goal is, given satellite images, to accurately generate cloud masks that identify each pixel in image to contain either cloud or clear sky. In this paper, we summarize some of the ongoing research activities in cloud masking, with a focus on the research and benchmark currently conducted in MLCommons Science Working Group. This overview is produced with the hope that others will have an easier time getting started and collaborate on the activities related to MLCommons Cloud Mask Benchmark.