Abstract:Network intrusion detection is critical for securing modern networks, yet the complexity of network traffic poses significant challenges to traditional methods. This study proposes a Temporal Convolutional Network(TCN) model featuring a residual block architecture with dilated convolutions to capture dependencies in network traffic data while ensuring training stability. The TCN's ability to process sequences in parallel enables faster, more accurate sequence modeling than Recurrent Neural Networks. Evaluated on the Edge-IIoTset dataset, which includes 15 classes with normal traffic and 14 cyberattack types, the proposed model achieved an accuracy of 96.72% and a loss of 0.0688, outperforming 1D CNN, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-GRU-LSTM models. A class-wise classification report, encompassing metrics such as recall, precision, accuracy, and F1-score, demonstrated the TCN model's superior performance across varied attack categories, including Malware, Injection, and DDoS. These results underscore the model's potential in addressing the complexities of network intrusion detection effectively.
Abstract:Landslides inflict substantial societal and economic damage, underscoring their global significance as recurrent and destructive natural disasters. Recent landslides in northern parts of India and Nepal have caused significant disruption, damaging infrastructure and posing threats to local communities. Convolutional Neural Networks (CNNs), a type of deep learning technique, have shown remarkable success in image processing. Because of their sophisticated architectures, advanced CNN-based models perform better in landslide detection than conventional algorithms. The purpose of this work is to investigate CNNs' potential in more detail, with an emphasis on comparison of CNN based models for better landslide detection. We compared four traditional semantic segmentation models (U-Net, LinkNet, PSPNet, and FPN) and utilized the ResNet50 backbone encoder to implement them. Moreover, we have experimented with the hyperparameters such as learning rates, batch sizes, and regularization techniques to fine-tune the models. We have computed the confusion matrix for each model and used performance metrics including precision, recall and f1-score to evaluate and compare the deep learning models. According to the experimental results, LinkNet gave the best results among the four models having an Accuracy of 97.49% and a F1-score of 85.7% (with 84.49% precision, 87.07% recall). We have also presented a comprehensive comparison of all pixel-wise confusion matrix results and the time taken to train each model.