Abstract:Road intersection monitoring and control research often utilize bird's eye view (BEV) simulators. In real traffic settings, achieving a BEV akin to that in a simulator necessitates the deployment of drones or specific sensor mounting, which is neither feasible nor practical. Consequently, traffic intersection management remains confined to simulation environments given these constraints. In this paper, we address the gap between simulated environments and real-world implementation by introducing a novel deep-learning model that converts a single camera's perspective of a road intersection into a BEV. We created a simulation environment that closely resembles a real-world traffic junction. The proposed model transforms the vehicles into BEV images, facilitating road intersection monitoring and control model processing. Inspired by image transformation techniques, we propose a Spatial-Transformer Double Decoder-UNet (SDD-UNet) model that aims to eliminate the transformed image distortions. In addition, the model accurately estimates the vehicle's positions and enables the direct application of simulation-trained models in real-world contexts. SDD-UNet model achieves an average dice similarity coefficient (DSC) above 95% which is 40% better than the original UNet model. The mean absolute error (MAE) is 0.102 and the centroid of the predicted mask is 0.14 meters displaced, on average, indicating high accuracy.
Abstract:In contemporary rural healthcare settings, the principal challenge in diagnosing brain images is the scarcity of available data, given that most of the existing deep learning models demand extensive training data to optimize their performance, necessitating centralized processing methods that potentially compromise data privacy. This paper proposes a novel framework tailored for brain tissue segmentation in rural healthcare facilities. The framework employs a deep reinforcement learning (DRL) environment in tandem with a refinement model (RM) deployed locally at rural healthcare sites. The proposed DRL model has a reduced parameter count and practicality for implementation across distributed rural sites. To uphold data privacy and enhance model generalization without transgressing privacy constraints, we employ federated learning (FL) for cooperative model training. We demonstrate the efficacy of our approach by training the network with a limited data set and observing a substantial performance enhancement, mitigating inaccuracies and irregularities in segmentation across diverse sites. Remarkably, the DRL model attains an accuracy of up to 80%, surpassing the capabilities of conventional convolutional neural networks when confronted with data insufficiency. Incorporating our RM results in an additional accuracy improvement of at least 10%, while FL contributes to a further accuracy enhancement of up to 5%. Collectively, the framework achieves an average 92% accuracy rate within rural healthcare settings characterized by data constraints.