Abstract:Facial thermography is one of the most popular research areas in infrared thermal imaging, with diverse applications in medical, surveillance, and environmental monitoring. However, in contrast to facial imagery in the visual spectrum, the lack of public datasets on facial thermal images is an obstacle to research improvement in this area. Thermal face imagery is still a relatively new research area to be evaluated and studied in different domains.The current thermal face datasets are limited in regards to the subjects' distance from the camera, the ambient temperature variation, and facial landmarks' localization. We address these gaps by presenting a new facial thermography dataset. This article makes two main contributions to the body of knowledge. First, it presents a comprehensive review and comparison of current public datasets in facial thermography. Second, it introduces and studies a novel public dataset on facial thermography, which we call it Charlotte-ThermalFace. Charlotte-ThermalFace contains more than10000 infrared thermal images in varying thermal conditions, several distances from the camera, and different head positions. The data is fully annotated with the facial landmarks, ambient temperature, relative humidity, the air speed of the room, distance to the camera, and subject thermal sensation at the time of capturing each image. Our dataset is the first publicly available thermal dataset annotated with the thermal sensation of each subject in different thermal conditions and one of the few datasets in raw 16-bit format. Finally, we present a preliminary analysis of the dataset to show the applicability and importance of the thermal conditions in facial thermography. The full dataset, including annotations, are freely available for research purpose at https://github.com/TeCSAR-UNCC/UNCC-ThermalFace
Abstract:Recent research is trying to leverage occupants' demand in the building's control loop to consider individuals' well-being and the buildings' energy savings. To that end, a real-time feedback system is needed to provide data about occupants' comfort conditions that can be used to control the building's heating, cooling, and air conditioning (HVAC) system. The emergence of thermal imaging techniques provides an excellent opportunity for contactless data gathering with no interruption in occupant conditions and activities. There is increasing attention to infrared thermal camera usage in public buildings because of their non-invasive quality in reading the human skin temperature. However, the state-of-the-art methods need additional modifications to become more reliable. To capitalize potentials and address some existing limitations, new solutions are required to bring a more holistic view toward non-intrusive thermal scanning by leveraging the benefit of machine learning and image processing. This research implements an automated approach to collect and register simultaneous thermal and visual images and read the facial temperature in different regions. This paper also presents two additional investigations. First, through utilizing IButton wearable thermal sensors on the forehead area, we investigate the reliability of an in-expensive thermal camera (FLIR Lepton) in reading the skin temperature. Second, by studying the false-color version of thermal images, we look into the possibility of non-radiometric thermal images for predicting personalized thermal comfort. The results shows the strong performance of Random Forest and K-Nearest Neighbor prediction algorithms in predicting personalized thermal comfort. In addition, we have found that non-radiometric images can also indicate thermal comfort when the algorithm is trained with larger amounts of data.