Abstract:In robotic systems, perception latency is a term that refers to the computing time measured from the data acquisition to the moment in which perception output is ready to be used to compute control commands. There is a compromise between perception latency, precision for the overall robotic system, and computational resource usage referred to here as the latency-precision trade-off. In this work, we analyze a robot model given by a linear system, a zero-order hold controller, and measurements taken by several perception mode possibilities with different noise levels. We show that the analysis of this system is reduced to studying an equivalent switching system. Our goal is to schedule perception modes such that stability is attained while optimizing a cost function that models the latency-precision trade-off. Our solution framework comprises three main tools: the construction of perception scheduling policy candidates, admissibility verification for policy candidates, and optimal strategies based on admissible policies.
Abstract:Target tracking is a popular problem with many potential applications. There has been a lot of effort on improving the quality of the detection of targets using cameras through different techniques. In general, with higher computational effort applied, i.e., a longer perception-latency, a better detection accuracy is obtained. However, it is not always useful to apply the longest perception-latency allowed, particularly when the environment doesn't require to and when the computational resources are shared between other tasks. In this work, we propose a new Perception-LATency aware Estimator (PLATE), which uses different perception configurations in different moments of time in order to optimize a certain performance measure. This measure takes into account a perception-latency and accuracy trade-off aiming for a good compromise between quality and resource usage. Compared to other heuristic frame-skipping techniques, PLATE comes with a formal complexity and optimality analysis. The advantages of PLATE are verified by several experiments including an evaluation over a standard benchmark with real data and using state of the art deep learning object detection methods for the perception stage.