Abstract:Despite the fact real-world video deinterlacing and demosaicing are well-suited to supervised learning from synthetically degraded data because the degradation models are known and fixed, learned video deinterlacing and demosaicing have received much less attention compared to denoising and super-resolution tasks. We propose a new multi-picture architecture for video deinterlacing or demosaicing by aligning multiple supporting pictures with missing data to a reference picture to be reconstructed, benefiting from both local and global spatio-temporal correlations in the feature space using modified deformable convolution blocks and a novel residual efficient top-$k$ self-attention (kSA) block, respectively. Separate reconstruction blocks are used to estimate different types of missing data. Our extensive experimental results, on synthetic or real-world datasets, demonstrate that the proposed novel architecture provides superior results that significantly exceed the state-of-the-art for both tasks in terms of PSNR, SSIM, and perceptual quality. Ablation studies are provided to justify and show the benefit of each novel modification made to the deformable convolution and residual efficient kSA blocks. Code is available: https://github.com/KUIS-AI-Tekalp-Research-Group/Video-Deinterlacing.
Abstract:Although deep learning has made significant impact on image/video restoration and super-resolution, learned deinterlacing has so far received less attention in academia or industry. This is despite deinterlacing is well-suited for supervised learning from synthetic data since the degradation model is known and fixed. In this paper, we propose a novel multi-field full frame-rate deinterlacing network, which adapts the state-of-the-art superresolution approaches to the deinterlacing task. Our model aligns features from adjacent fields to a reference field (to be deinterlaced) using both deformable convolution residual blocks and self attention. Our extensive experimental results demonstrate that the proposed method provides state-of-the-art deinterlacing results in terms of both numerical and perceptual performance. At the time of writing, our model ranks first in the Full FrameRate LeaderBoard at https://videoprocessing.ai/benchmarks/deinterlacer.html