Abstract:In this paper, we show that transferring knowledge from other domains of video understanding combined with large-scale learning can improve robustness of Video Object Segmentation (VOS) under complex circumstances. Namely, we focus on integrating scene global motion knowledge to improve large-scale semi-supervised Video Object Segmentation. Prior works on VOS mostly rely on direct comparison of semantic and contextual features to perform dense matching between current and past frames, passing over actual motion structure. On the other hand, Optical Flow Estimation task aims to approximate the scene motion field, exposing global motion patterns which are typically undiscoverable during all pairs similarity search. We present WarpFormer, an architecture for semi-supervised Video Object Segmentation that exploits existing knowledge in motion understanding to conduct smoother propagation and more accurate matching. Our framework employs a generic pretrained Optical Flow Estimation network whose prediction is used to warp both past frames and instance segmentation masks to the current frame domain. Consequently, warped segmentation masks are refined and fused together aiming to inpaint occluded regions and eliminate artifacts caused by flow field imperfects. Additionally, we employ novel large-scale MOSE 2023 dataset to train model on various complex scenarios. Our method demonstrates strong performance on DAVIS 2016/2017 validation (93.0% and 85.9%), DAVIS 2017 test-dev (80.6%) and YouTube-VOS 2019 validation (83.8%) that is competitive with alternative state-of-the-art methods while using much simpler memory mechanism and instance understanding logic.
Abstract:The recent works on Video Object Segmentation achieved remarkable results by matching dense semantic and instance-level features between the current and previous frames for long-time propagation. Nevertheless, global feature matching ignores scene motion context, failing to satisfy temporal consistency. Even though some methods introduce local matching branch to achieve smooth propagation, they fail to model complex appearance changes due to the constraints of the local window. In this paper, we present DeVOS (Deformable VOS), an architecture for Video Object Segmentation that combines memory-based matching with motion-guided propagation resulting in stable long-term modeling and strong temporal consistency. For short-term local propagation, we propose a novel attention mechanism ADVA (Adaptive Deformable Video Attention), allowing the adaption of similarity search region to query-specific semantic features, which ensures robust tracking of complex shape and scale changes. DeVOS employs an optical flow to obtain scene motion features which are further injected to deformable attention as strong priors to learnable offsets. Our method achieves top-rank performance on DAVIS 2017 val and test-dev (88.1%, 83.0%), YouTube-VOS 2019 val (86.6%) while featuring consistent run-time speed and stable memory consumption