MAPMO
Abstract:Sentinel-5P (S5P) satellite provides atmospheric measurements for air quality and climate monitoring. While the S5P satellite offers rich spectral resolution, it inherits physical limitations that restricts its spatial resolution. Super-resolution (SR) techniques can overcome these limitations and enhance the spatial resolution of S5P data. In this work, we introduce a novel SR model specifically designed for S5P data that have eight spectral bands with around 500 channels for each band. Our proposed S5-DSCR model relies on Depth Separable Convolution (DSC) architecture to effectively perform spatial SR by exploiting cross-channel correlations. Quantitative evaluation demonstrates that our model outperforms existing methods for the majority of the spectral bands. This work highlights the potential of leveraging DSC architecture to address the challenges of hyperspectral SR. Our model allows for capturing fine details necessary for precise analysis and paves the way for advancements in air quality monitoring as well as remote sensing applications.
Abstract:This paper deals with a method of tomographic reconstruction of radially symmetric objects from a single radiograph, in order to study the behavior of shocked material. The usual tomographic reconstruction algorithms such as generalized inverse or filtered back-projection cannot be applied here because data are very noisy and the inverse problem associated to single view tomographic reconstruction is highly unstable. In order to improve the reconstruction, we propose here to add some a priori assumptions on the looked after object. One of these assumptions is that the object is binary and consequently, the object may be described by the curves that separate the two materials. We present a model that lives in BV space and leads to a non local Hamilton-Jacobi equation, via a level set strategy. Numerical experiments are performed (using level sets methods) on synthetic objects.