Abstract:Febrile neutropenia (FN) has been associated with high mortality, especially among adults with cancer. Understanding the patient and provider level heterogeneity in FN hospital admissions has potential to inform personalized interventions focused on increasing survival of individuals with FN. We leverage machine learning techniques to disentangling the complex interactions among multi domain risk factors in a population with FN. Data from the Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample and Nationwide Inpatient Sample (NIS) were used to build machine learning based models of mortality for adult cancer patients who were diagnosed with FN during a hospital admission. In particular, the importance of risk factors from different domains (including demographic, clinical, and hospital associated information) was studied. A set of more interpretable (decision tree, logistic regression) as well as more black box (random forest, gradient boosting, neural networks) models were analyzed and compared via multiple cross validation. Our results demonstrate that a linear prediction score of FN mortality among adults with cancer, based on admission information is effective in classifying high risk patients; clinical diagnoses is the domain with the highest predictive power. A number of the risk variables (e.g. sepsis, kidney failure, etc.) identified in this study are clinically actionable and may inform future studies looking at the patients prior medical history are warranted.