Abstract:We present a new labeled visual dataset intended for use in object detection and segmentation tasks. This dataset consists of 5,000 synthetic photorealistic images with their corresponding pixel-perfect segmentation ground truth. The goal is to create a photorealistic 3D representation of a specific object and utilize it within a simulated training data setting to achieve high accuracy on manually gathered and annotated real-world data. Expo Markers were chosen for this task, fitting our requirements of an exact object due to the exact texture, size and 3D shape. An additional advantage is the availability of this object in offices around the world for easy testing and validation of our results. We generate the data using a domain randomization technique that also simulates other photorealistic objects in the scene, known as distraction objects. These objects provide visual complexity, occlusions, and lighting challenges to help our model gain robustness in training. We are also releasing our manually-labeled real-image test dataset. This white-paper provides strong evidence that photorealistic simulated data can be used in practical real world applications as a more scalable and flexible solution than manually-captured data. https://github.com/DataGenResearchTeam/expo_markers