Abstract:Reconfigurable intelligent surfaces (RISs) offer enhanced control over propagation through phase and amplitude manipulation but face practical challenges like cost and power usage, especially at high frequencies. This is specifically a major problem at high frequencies (Ka- and V-band) where the high cost of semiconductor components (i.e., diodes, varactors, MEMSs) can make RISs prohibitively costly. In recent years, it is shown that liquid crystals (LCs) are low-cost and low-energy alternative which can address the aforementioned challenges but at the cost of lower response time. In LiquiRIS, we enable leveraging LC-based RIS in mobile networks. Specifically, we devise techniques that minimize the beam switching time of LC-based RIS by tapping into the physical properties of LCs and the underlying mathematical principles of beamforming. We achieve this by modeling and optimizing the beamforming vector to account for the rotation characteristics of LC molecules to reduce their transition time from one state to another. In addition to prototyping the proposed system, we show via extensive experimental analysis that LiquiRIS substantially reduces the response time (up to 70.80%) of liquid crystal surface (LCS).
Abstract:Liquid crystal (LC) technology offers a cost-effective, scalable, energy-efficient, and continuous phase tunable realization of extremely large reconfigurable intelligent surfaces (RISs). However, LC response time to achieve a desired differential phase is significantly higher compared to competing silicon-based technologies (RF switches, PIN diodes, etc). The slow response time can be the performance bottleneck for applications where frequent reconfiguration of the RIS (e.g., to serve different users) is needed. In this paper, we develop an RIS phase-shift design that is aware of the transition behavior and aims to minimize the time to switch among multiple RIS configurations each serving a mobile user in a time-division multiple-access (TDMA) protocol. Our simulation results confirm that the proposed algorithm significantly reduces the time required for the users to achieve a threshold signal quality. This leads to a considerable improvement in the achievable throughput for applications, where the length of the TDMA time intervals is comparable with the RIS reconfiguration time.