Abstract:Differential privacy (DP) is becoming increasingly important for deployed machine learning applications because it provides strong guarantees for protecting the privacy of individuals whose data is used to train models. However, DP mechanisms commonly used in machine learning tend to struggle on many real world distributions, including highly imbalanced or small labeled training sets. In this work, we propose a new scalable DP mechanism for deep learning models, SWAG-PPM, by using a pseudo posterior distribution that downweights by-record likelihood contributions proportionally to their disclosure risks as the randomized mechanism. As a motivating example from official statistics, we demonstrate SWAG-PPM on a workplace injury text classification task using a highly imbalanced public dataset published by the U.S. Occupational Safety and Health Administration (OSHA). We find that SWAG-PPM exhibits only modest utility degradation against a non-private comparator while greatly outperforming the industry standard DP-SGD for a similar privacy budget.
Abstract:Deductive coding is a widely used qualitative research method for determining the prevalence of themes across documents. While useful, deductive coding is often burdensome and time consuming since it requires researchers to read, interpret, and reliably categorize a large body of unstructured text documents. Large language models (LLMs), like ChatGPT, are a class of quickly evolving AI tools that can perform a range of natural language processing and reasoning tasks. In this study, we explore the use of LLMs to reduce the time it takes for deductive coding while retaining the flexibility of a traditional content analysis. We outline the proposed approach, called LLM-assisted content analysis (LACA), along with an in-depth case study using GPT-3.5 for LACA on a publicly available deductive coding data set. Additionally, we conduct an empirical benchmark using LACA on 4 publicly available data sets to assess the broader question of how well GPT-3.5 performs across a range of deductive coding tasks. Overall, we find that GPT-3.5 can often perform deductive coding at levels of agreement comparable to human coders. Additionally, we demonstrate that LACA can help refine prompts for deductive coding, identify codes for which an LLM is randomly guessing, and help assess when to use LLMs vs. human coders for deductive coding. We conclude with several implications for future practice of deductive coding and related research methods.