Abstract:Multirotor Unmanned Aerial Vehicles (UAV)s have recently become an important instrument for collecting mineral data, enabling more effective and accurate geological investigations. This paper explores the difficulties in mounting high-sensitivity sensors on a UAV platform, including electromagnetic interference, payload dynamics, and maintaining stable sensor performance while in flight. It is highlighted how the specific solutions provided to deal with these problems have the potential to alter the collection of mineral data assisted by UAVs. The work also shows experimental findings that demonstrate the creative potential of these solutions in UAV-based mineral data collecting, leading to improvements in effective mineral exploration through careful design, testing, and assessment of these systems. These innovations resulted in a platform that is quickly deployable in remote areas and able to operate more efficiently compared to traditional multirotor UAVs while still producing equal or higher quality mineral data. This allows for much higher efficiency and lower operating costs for high-production UAV-based mineral data acquisition.
Abstract:In this paper, the focus is on improving the efficiency and precision of mineral data collection using UAVs by addressing key challenges associated with sensor integration. These challenges include mitigating electromagnetic interference, reducing vibration noise, and ensuring consistent sensor performance during flight. The paper demonstrates how innovative approaches to these issues can significantly transform UAV-assisted mineral data collection. Through meticulous design, testing, and evaluation, the study presents experimental evidence of the efficacy of these methods in collecting mineral data via UAVs. The advancements achieved in this research enable the UAV platform to remain airborne up to 6$\times$ longer than standard battery-powered multirotors, while still gathering high-quality mineral data. This leads to increased operational efficiency and reduced costs in UAV-based mineral data-gathering processes