LMD/IPSL, École Polytechnique, Palaiseau, France
Abstract:Sub-seasonal wind speed forecasts provide valuable guidance for wind power system planning and operations, yet the forecasting skills of surface winds decrease sharply after two weeks. However, large-scale variables exhibit greater predictability on this time scale. This study explores the potential of leveraging non-linear relationships between 500 hPa geopotential height (Z500) and surface wind speed to improve subs-seasonal wind speed forecasting skills in Europe. Our proposed framework uses a Multiple Linear Regression (MLR) or a Convolutional Neural Network (CNN) to regress surface wind speed from Z500. Evaluations on ERA5 reanalysis indicate that the CNN performs better due to their non-linearity. Applying these models to sub-seasonal forecasts from the European Centre for Medium-Range Weather Forecasts, various verification metrics demonstrate the advantages of non-linearity. Yet, this is partly explained by the fact that these statistical models are under-dispersive since they explain only a fraction of the target variable variance. Introducing stochastic perturbations to represent the stochasticity of the unexplained part from the signal helps compensate for this issue. Results show that the perturbed CNN performs better than the perturbed MLR only in the first weeks, while the perturbed MLR's performance converges towards that of the perturbed CNN after two weeks. The study finds that introducing stochastic perturbations can address the issue of insufficient spread in these statistical models, with improvements from the non-linearity varying with the lead time of the forecasts.
Abstract:We study the prediction of short term wind speed and wind power (every 10 minutes up to 4 hours ahead). Accurate forecasts for those quantities are crucial to mitigate the negative effects of wind farms' intermittent production on energy systems and markets. For those time scales, outputs of numerical weather prediction models are usually overlooked even though they should provide valuable information on higher scales dynamics. In this work, we combine those outputs with local observations using machine learning. So as to make the results usable for practitioners, we focus on simple and well known methods which can handle a high volume of data. We study first variable selection through two simple techniques, a linear one and a nonlinear one. Then we exploit those results to forecast wind speed and wind power still with an emphasis on linear models versus nonlinear ones. For the wind power prediction, we also compare the indirect approach (wind speed predictions passed through a power curve) and the indirect one (directly predict wind power).