Abstract:Feature selection is crucial for pinpointing relevant features in high-dimensional datasets, mitigating the 'curse of dimensionality,' and enhancing machine learning performance. Traditional feature selection methods for classification use data from all classes to select features for each class. This paper explores feature selection methods that select features for each class separately, using class models based on low-rank generative methods and introducing a signal-to-noise ratio (SNR) feature selection criterion. This novel approach has theoretical true feature recovery guarantees under certain assumptions and is shown to outperform some existing feature selection methods on standard classification datasets.
Abstract:This paper introduces a Video Quality Assessment (VQA) problem that has received little attention in the literature, called the latent resolution prediction problem. The problem arises when images or videos are upscaled from their native resolution and are reported as having a higher resolution than their native resolution. This paper formulates the problem, constructs a dataset for training and evaluation, and introduces several machine learning algorithms, including two Convolutional Neural Networks (CNNs), to address this problem. Experiments indicate that some proposed methods can predict the latent video resolution with about 95% accuracy.