Abstract:We propose a novel semi-parametric classifier based on Mahalanobis distances of an observation from the competing classes. Our tool is a generalized additive model with the logistic link function that uses these distances as features to estimate the posterior probabilities of the different classes. While popular parametric classifiers like linear and quadratic discriminant analyses are mainly motivated by the normality of the underlying distributions, the proposed classifier is more flexible and free from such parametric assumptions. Since the densities of elliptic distributions are functions of Mahalanobis distances, this classifier works well when the competing classes are (nearly) elliptic. In such cases, it often outperforms popular nonparametric classifiers, especially when the sample size is small compared to the dimension of the data. To cope with non-elliptic and possibly multimodal distributions, we propose a local version of the Mahalanobis distance. Subsequently, we propose another classifier based on a generalized additive model that uses the local Mahalanobis distances as features. This nonparametric classifier usually performs like the Mahalanobis distance based semiparametric classifier when the underlying distributions are elliptic, but outperforms it for several non-elliptic and multimodal distributions. We also investigate the behaviour of these two classifiers in high dimension, low sample size situations. A thorough numerical study involving several simulated and real datasets demonstrate the usefulness of the proposed classifiers in comparison to many state-of-the-art methods.
Abstract:Quadratic discriminant analysis (QDA) is a widely used statistical tool to classify observations from different multivariate Normal populations. The generalized quadratic discriminant analysis (GQDA) classification rule/classifier, which generalizes the QDA and the minimum Mahalanobis distance (MMD) classifiers to discriminate between populations with underlying elliptically symmetric distributions competes quite favorably with the QDA classifier when it is optimal and performs much better when QDA fails under non-Normal underlying distributions, e.g. Cauchy distribution. However, the classification rule in GQDA is based on the sample mean vector and the sample dispersion matrix of a training sample, which are extremely non-robust under data contamination. In real world, since it is quite common to face data highly vulnerable to outliers, the lack of robustness of the classical estimators of the mean vector and the dispersion matrix reduces the efficiency of the GQDA classifier significantly, increasing the misclassification errors. The present paper investigates the performance of the GQDA classifier when the classical estimators of the mean vector and the dispersion matrix used therein are replaced by various robust counterparts. Applications to various real data sets as well as simulation studies reveal far better performance of the proposed robust versions of the GQDA classifier. A Comparative study has been made to advocate the appropriate choice of the robust estimators to be used in a specific situation of the degree of contamination of the data sets.