Abstract:Source-free domain adaptation (SFDA) utilizes a pre-trained source model with unlabeled target data. Self-supervised SFDA techniques generate pseudolabels from the pre-trained source model, but these pseudolabels often contain noise due to domain discrepancies between the source and target domains. Traditional self-supervised SFDA techniques rely on deterministic model predictions using the softmax function, leading to unreliable pseudolabels. In this work, we propose to introduce predictive uncertainty and softmax calibration for pseudolabel refinement using evidential deep learning. The Dirichlet prior is placed over the output of the target network to capture uncertainty using evidence with a single forward pass. Furthermore, softmax calibration solves the translation invariance problem to assist in learning with noisy labels. We incorporate a combination of evidential deep learning loss and information maximization loss with calibrated softmax in both prior and non-prior target knowledge SFDA settings. Extensive experimental analysis shows that our method outperforms other state-of-the-art methods on benchmark datasets.
Abstract:Semi-supervised (SS) semantic segmentation exploits both labeled and unlabeled images to overcome tedious and costly pixel-level annotation problems. Pseudolabel supervision is one of the core approaches of training networks with both pseudo labels and ground-truth labels. This work uses aleatoric or data uncertainty and energy based modeling in intersection-union pseudo supervised network.The aleatoric uncertainty is modeling the inherent noise variations of the data in a network with two predictive branches. The per-pixel variance parameter obtained from the network gives a quantitative idea about the data uncertainty. Moreover, energy-based loss realizes the potential of generative modeling on the downstream SS segmentation task. The aleatoric and energy loss are applied in conjunction with pseudo-intersection labels, pseudo-union labels, and ground-truth on the respective network branch. The comparative analysis with state-of-the-art methods has shown improvement in performance metrics.