Abstract:The purpose of this paper is to examine whether large language models (LLMs) can understand what is good and evil with respect to judging good/evil reputation of celebrities. Specifically, we first apply a large language model (namely, ChatGPT) to the task of collecting sentences that mention the target celebrity from articles about celebrities on Web pages. Next, the collected sentences are categorized based on their contents by ChatGPT, where ChatGPT assigns a category name to each of those categories. Those assigned category names are referred to as "aspects" of each celebrity. Then, by applying the framework of retrieval augmented generation (RAG), we show that the large language model is quite effective in the task of judging good/evil reputation of aspects and descriptions of each celebrity. Finally, also in terms of proving the advantages of the proposed method over existing services incorporating RAG functions, we show that the proposed method of judging good/evil of aspects/descriptions of each celebrity significantly outperform an existing service incorporating RAG functions.