Abstract:What can we learn from the classics of Finnish literature by using computational emotion analysis? This article tries to answer this question by examining how computational methods of sentiment analysis can be used in the study of literary works in conjunction with a qualitative or more 'traditional' approach to literature and affect. We present and develop a simple but robust computational approach of affect analysis that uses a carefully curated emotion lexicon adapted to Finnish turn-of-the-century literary texts combined with word embeddings to map out the semantic emotional spaces of seminal works of Finnish literature. We focus our qualitative analysis on selected case studies: four works by Juhani Aho, Minna Canth, Maria Jotuni, and F. E. Sillanp\"a\"a, but provide emotion arcs for a total of 975 Finnish novels. We argue that a computational analysis of a text's lexicon can be valuable in evaluating the large distribution of the emotional valence in a text and provide guidelines to help other researchers replicate our findings. We show that computational approaches have a place in traditional studies on affect in literature as a support tool for close-reading-based analyses, but also allowing for large-scale comparison between, for example, genres or national canons.
Abstract:We propose to use affect as a proxy for mood in literary texts. In this study, we explore the differences in computationally detecting tone versus detecting mood. Methodologically we utilize affective word embeddings to look at the affective distribution in different text segments. We also present a simple yet efficient and effective method of enhancing emotion lexicons to take both semantic shift and the domain of the text into account producing real-world congruent results closely matching both contemporary and modern qualitative analyses.