Abstract:Machine learning can be used to analyse physiological data for several purposes. Detection of cerebral ischemia is an achievement that would have high impact on patient care. We attempted to study if collection of continous physiological data from non-invasive monitors, and analysis with machine learning could detect cerebral ischemia in tho different setting, during surgery for carotid endarterectomy and during endovascular thrombectomy in acute stroke. We compare the results from the two different group and one patient from each group in details. While results from CEA-patients are consistent, those from thrombectomy patients are not and frequently contain extreme values such as 1.0 in accuracy. We conlcude that this is a result of short duration of the procedure and abundance of data with bad quality resulting in small data sets. These results can therefore not be trusted.
Abstract:Machine learning is used in medicine to support physicians in examination, diagnosis, and predicting outcomes. One of the most dynamic area is the usage of patient generated health data from intensive care units. The goal of this paper is to demonstrate how we advance cross-patient ML model development by combining the patient's demographics data with their physiological data. We used a population of patients undergoing Carotid Enderarterectomy (CEA), where we studied differences in model performance and explainability when trained for all patients and one patient at a time. The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness. We conclude that we can increase trust in ML models in a cross-patient context, by careful selection of models and patients based on their demographics and the surgical procedure.