Abstract:We introduce a new ligand-based virtual screening (LBVS) framework that uses piecewise linear (PL) Morse theory to predict ligand binding potential. We model ligands as simplicial complexes via a pruned Delaunay triangulation, and catalogue the critical points across multiple directional height functions. This produces a rich feature vector, consisting of crucial topological features -- peaks, troughs, and saddles -- that characterise ligand surfaces relevant to binding interactions. Unlike contemporary LBVS methods that rely on computationally-intensive deep neural networks, we require only a lightweight classifier. The Morse theoretic approach achieves state-of-the-art performance on standard datasets while offering an interpretable feature vector and scalable method for ligand prioritization in early-stage drug discovery.