Abstract:This paper presents the Random-Key Optimizer (RKO), a versatile and efficient stochastic local search method tailored for combinatorial optimization problems. Using the random-key concept, RKO encodes solutions as vectors of random keys that are subsequently decoded into feasible solutions via problem-specific decoders. The RKO framework is able to combine a plethora of classic metaheuristics, each capable of operating independently or in parallel, with solution sharing facilitated through an elite solution pool. This modular approach allows for the adaptation of various metaheuristics, including simulated annealing, iterated local search, and greedy randomized adaptive search procedures, among others. The efficacy of the RKO framework, implemented in C++, is demonstrated through its application to three NP-hard combinatorial optimization problems: the alpha-neighborhood p-median problem, the tree of hubs location problem, and the node-capacitated graph partitioning problem. The results highlight the framework's ability to produce high-quality solutions across diverse problem domains, underscoring its potential as a robust tool for combinatorial optimization.
Abstract:This paper proposes a problem-independent GRASP metaheuristic using the random-key optimizer (RKO) paradigm. GRASP (greedy randomized adaptive search procedure) is a metaheuristic for combinatorial optimization that repeatedly applies a semi-greedy construction procedure followed by a local search procedure. The best solution found over all iterations is returned as the solution of the GRASP. Continuous GRASP (C-GRASP) is an extension of GRASP for continuous optimization in the unit hypercube. A random-key optimizer (RKO) uses a vector of random keys to encode a solution to a combinatorial optimization problem. It uses a decoder to evaluate a solution encoded by the vector of random keys. A random-key GRASP is a C-GRASP where points in the unit hypercube are evaluated employing a decoder. We describe random key GRASP consisting of a problem-independent component and a problem-dependent decoder. As a proof of concept, the random-key GRASP is tested on five NP-hard combinatorial optimization problems: traveling salesman problem, tree of hubs location problem, Steiner triple covering problem, node capacitated graph partitioning problem, and job sequencing and tool switching problem.