Abstract:This paper investigates image denoising, comparing traditional non-learning-based techniques, represented by Block-Matching 3D (BM3D), with modern learning-based methods, exemplified by NBNet. We assess these approaches across diverse datasets, including CURE-OR, CURE-TSR, SSID+, Set-12, and Chest-Xray, each presenting unique noise challenges. Our analysis employs seven Image Quality Assessment (IQA) metrics and examines the impact on object detection performance. We find that while BM3D excels in scenarios like blur challenges, NBNet is more effective in complex noise environments such as under-exposure and over-exposure. The study reveals the strengths and limitations of each method, providing insights into the effectiveness of different denoising strategies in varied real-world applications.
Abstract:This project investigates the efficacy of Large Language Models (LLMs) in understanding and extracting scientific knowledge across specific domains and to create a deep learning framework: Knowledge AI. As a part of this framework, we employ pre-trained models and fine-tune them on datasets in the scientific domain. The models are adapted for four key Natural Language Processing (NLP) tasks: summarization, text generation, question answering, and named entity recognition. Our results indicate that domain-specific fine-tuning significantly enhances model performance in each of these tasks, thereby improving their applicability for scientific contexts. This adaptation enables non-experts to efficiently query and extract information within targeted scientific fields, demonstrating the potential of fine-tuned LLMs as a tool for knowledge discovery in the sciences.
Abstract:There have been many advances in the artificial intelligence field due to the emergence of deep learning. In almost all sub-fields, artificial neural networks have reached or exceeded human-level performance. However, most of the models are not interpretable. As a result, it is hard to trust their decisions, especially in life and death scenarios. In recent years, there has been a movement toward creating explainable artificial intelligence, but most work to date has concentrated on image processing models, as it is easier for humans to perceive visual patterns. There has been little work in other fields like natural language processing. In this paper, we train a convolutional model on textual data and analyze the global logic of the model by studying its filter values. In the end, we find the most important words in our corpus to our models logic and remove the rest (95%). New models trained on just the 5% most important words can achieve the same performance as the original model while reducing training time by more than half. Approaches such as this will help us to understand NLP models, explain their decisions according to their word choices, and improve them by finding blind spots and biases.