Abstract:This paper presents a deep learning architecture for nowcasting of precipitation almost globally every 30 min with a 4-hour lead time. The architecture fuses a U-Net and a convolutional long short-term memory (LSTM) neural network and is trained using data from the Integrated MultisatellitE Retrievals for GPM (IMERG) and a few key precipitation drivers from the Global Forecast System (GFS). The impacts of different training loss functions, including the mean-squared error (regression) and the focal-loss (classification), on the quality of precipitation nowcasts are studied. The results indicate that the regression network performs well in capturing light precipitation (below 1.6 mm/hr), but the classification network can outperform the regression network for nowcasting of precipitation extremes (>8 mm/hr), in terms of the critical success index (CSI).. Using the Wasserstein distance, it is shown that the predicted precipitation by the classification network has a closer class probability distribution to the IMERG than the regression network. It is uncovered that the inclusion of the physical variables can improve precipitation nowcasting, especially at longer lead times in both networks. Taking IMERG as a relative reference, a multi-scale analysis in terms of fractions skill score (FSS), shows that the nowcasting machine remains skillful (FSS > 0.5) at the resolution of 10 km compared to 50 km for GFS. For precipitation rates greater than 4~mm/hr, only the classification network remains FSS-skillful on scales greater than 50 km within a 2-hour lead time.
Abstract:This paper presents an algorithm that relies on a series of dense and deep neural networks for passive microwave retrieval of precipitation. The neural networks learn from coincidences of brightness temperatures from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) with the active precipitating retrievals from the Dual-frequency Precipitation Radar (DPR) onboard GPM as well as those from the {CloudSat} Profiling Radar (CPR). The algorithm first detects the precipitation occurrence and phase and then estimates its rate, while conditioning the results to some key ancillary information including parameters related to cloud microphysical properties. The results indicate that we can reconstruct the DPR rainfall and CPR snowfall with a detection probability of more than 0.95 while the probability of a false alarm remains below 0.08 and 0.03, respectively. Conditioned to the occurrence of precipitation, the unbiased root mean squared error in estimation of rainfall (snowfall) rate using DPR (CPR) data is less than 0.8 (0.1) mm/hr over oceans and land. Beyond methodological developments, comparing the results with ERA5 reanalysis and official GPM products demonstrates that the uncertainty in global satellite snowfall retrievals continues to be large while there is a good agreement among rainfall products. Moreover, the results indicate that CPR active snowfall data can improve passive microwave estimates of global snowfall while the current CPR rainfall retrievals should only be used for detection and not estimation of rates.