Abstract:Synthetic data generation, a cornerstone of Generative Artificial Intelligence, signifies a paradigm shift in data science by addressing data scarcity and privacy while enabling unprecedented performance. As synthetic data gains prominence, questions arise concerning the accuracy of statistical methods when applied to synthetic data compared to raw data. In this article, we introduce the Synthetic Data Generation for Analytics framework. This framework employs statistical methods on high-fidelity synthetic data generated by advanced models such as tabular diffusion and Generative Pre-trained Transformer models. These models, trained on raw data, are further enhanced with insights from pertinent studies. A significant discovery within this framework is the generational effect: the error of a statistical method on synthetic data initially diminishes with added synthetic data but may eventually increase or plateau. This phenomenon, rooted in the complexities of replicating raw data distributions, highlights a "reflection point"--an optimal threshold in the size of synthetic data determined by specific error metrics. Through three illustrative case studies-sentiment analysis of texts, predictive modeling of structured data, and inference in tabular data--we demonstrate the effectiveness of this framework over traditional ones. We underline its potential to amplify various statistical methods, including gradient boosting for prediction and hypothesis testing, thereby underscoring the transformative potential of synthetic data generation in data science.
Abstract:This paper introduces a novel generator called Perturbation-Assisted Sample Synthesis (PASS), designed for drawing reliable conclusions from complex data, especially when using advanced modeling techniques like deep neural networks. PASS utilizes perturbation to generate synthetic data that closely mirrors the distribution of raw data, encompassing numerical and unstructured data types such as gene expression, images, and text. By estimating the data-generating distribution and leveraging large pre-trained generative models, PASS enhances estimation accuracy, providing an estimated distribution of any statistic through Monte Carlo experiments. Building on PASS, we propose a generative inference framework called Perturbation-Assisted Inference (PAI), which offers a statistical guarantee of validity. In pivotal inference, PAI enables accurate conclusions without knowing a pivotal's distribution as in simulations, even with limited data. In non-pivotal situations, we train PASS using an independent holdout sample, resulting in credible conclusions. To showcase PAI's capability in tackling complex problems, we highlight its applications in three domains: image synthesis inference, sentiment word inference, and multimodal inference via stable diffusion.