Abstract:Cross-lingual Named Entity Recognition (NER) leverages knowledge transfer between languages to identify and classify named entities, making it particularly useful for low-resource languages. We show that the data-based cross-lingual transfer method is an effective technique for crosslingual NER and can outperform multilingual language models for low-resource languages. This paper introduces two key enhancements to the annotation projection step in cross-lingual NER for low-resource languages. First, we explore refining word alignments using back-translation to improve accuracy. Second, we present a novel formalized projection approach of matching source entities with extracted target candidates. Through extensive experiments on two datasets spanning 57 languages, we demonstrated that our approach surpasses existing projectionbased methods in low-resource settings. These findings highlight the robustness of projection-based data transfer as an alternative to model-based methods for crosslingual named entity recognition in lowresource languages.
Abstract:The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of language-parallel multilingual benchmarks. We introduce a multilingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.
Abstract:The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.