Abstract:Data is required to develop forecasting models for use in Model Predictive Control (MPC) schemes in building energy systems. However, data usage incurs costs from both its collection and exploitation. Determining cost optimal data usage requires understanding of the forecast accuracy and resulting MPC operational performance it enables. This study investigates the performance of both simple and state-of-the-art machine learning prediction models for MPC in a multi-building energy system simulation using historic building energy data. The impact of data usage on forecast accuracy is quantified for the following data efficiency measures: reuse of prediction models, reduction of training data volumes, reduction of model data features, and online model training. A simple linear multi-layer perceptron model is shown to provide equivalent forecast accuracy to state-of-the-art models, with greater data efficiency and generalisability. The use of more than 2 years of training data for load prediction models provided no significant improvement in forecast accuracy. Forecast accuracy and data efficiency were improved simultaneously by using change-point analysis to screen training data. Reused models and those trained with 3 months of data had on average 10% higher error than baseline, indicating that deploying MPC systems without prior data collection may be economic.
Abstract:This paper presents an approach based on higher order dynamic mode decomposition (HODMD) to model, analyse, and forecast energy behaviour in an urban agriculture farm situated in a retrofitted London underground tunnel, where observed measurements are influenced by noisy and occasionally transient conditions. HODMD is a data-driven reduced order modelling method typically used to analyse and predict highly noisy and complex flows in fluid dynamics or any type of complex data from dynamical systems. HODMD is a recent extension of the classical dynamic mode decomposition method (DMD), customised to handle scenarios where the spectral complexity underlying the measurement data is higher than its spatial complexity, such as is the environmental behaviour of the farm. HODMD decomposes temporal data as a linear expansion of physically-meaningful DMD-modes in a semi-automatic approach, using a time-delay embedded approach. We apply HODMD to three seasonal scenarios using real data measured by sensors located at at the cross-sectional centre of the the underground farm. Through the study we revealed three physically-interpretable mode pairs that govern the environmental behaviour at the centre of the farm, consistently across environmental scenarios. Subsequently, we demonstrate how we can reconstruct the fundamental structure of the observed time-series using only these modes, and forecast for three days ahead, as one, compact and interpretable reduced-order model. We find HODMD to serve as a robust, semi-automatic modelling alternative for predictive modelling in Digital Twins.