Data is required to develop forecasting models for use in Model Predictive Control (MPC) schemes in building energy systems. However, data usage incurs costs from both its collection and exploitation. Determining cost optimal data usage requires understanding of the forecast accuracy and resulting MPC operational performance it enables. This study investigates the performance of both simple and state-of-the-art machine learning prediction models for MPC in a multi-building energy system simulation using historic building energy data. The impact of data usage on forecast accuracy is quantified for the following data efficiency measures: reuse of prediction models, reduction of training data volumes, reduction of model data features, and online model training. A simple linear multi-layer perceptron model is shown to provide equivalent forecast accuracy to state-of-the-art models, with greater data efficiency and generalisability. The use of more than 2 years of training data for load prediction models provided no significant improvement in forecast accuracy. Forecast accuracy and data efficiency were improved simultaneously by using change-point analysis to screen training data. Reused models and those trained with 3 months of data had on average 10% higher error than baseline, indicating that deploying MPC systems without prior data collection may be economic.