Abstract:Determining whether a molecule can be synthesized is crucial for many aspects of chemistry and drug discovery, allowing prioritization of experimental work and ranking molecules in de novo design tasks. Existing scoring approaches to assess synthetic feasibility struggle to extrapolate to out-of-distribution chemical spaces or fail to discriminate based on minor differences such as chirality that might be obvious to trained chemists. This work aims to address these limitations by introducing the Focused Synthesizability score (FSscore), which learns to rank structures based on binary preferences using a graph attention network. First, a baseline trained on an extensive set of reactant-product pairs is established that subsequently is fine-tuned with expert human feedback on a chemical space of interest. Fine-tuning on focused datasets improves performance on these chemical scopes over the pre-trained model exhibiting moderate performance and generalizability. This enables distinguishing hard- from easy-to-synthesize molecules and improving the synthetic accessibility of generative model outputs. On very complex scopes with limited labels achieving satisfactory gains remains challenging. The FSscore showcases how human expert feedback can be utilized to optimize the assessment of synthetic feasibility for a variety of applications.
Abstract:Proteolysis-Targeting Chimeras (PROTACs) represent a novel class of small molecules which are designed to act as a bridge between an E3 ligase and a disease-relevant protein, thereby promoting its subsequent degradation. PROTACs are composed of two protein binding "active" domains, linked by a "linker" domain. The design of the linker domain is challenging due to geometric and chemical constraints given by its interactions, and the need to maximize drug-likeness. To tackle these challenges, we introduce ShapeLinker, a method for de novo design of linkers. It performs fragment-linking using reinforcement learning on an autoregressive SMILES generator. The method optimizes for a composite score combining relevant physicochemical properties and a novel, attention-based point cloud alignment score. This new method successfully generates linkers that satisfy both relevant 2D and 3D requirements, and achieves state-of-the-art results in producing novel linkers assuming a target linker conformation. This allows for more rational and efficient PROTAC design and optimization. Code and data are available at https://github.com/aivant/ShapeLinker.